«Αυτά που δύναμαι να γνωρίζω είναι τόσα ώστε να μη δύναμαι να γνωρίζω πόσα είναι αυτά που δύναμαι να γνωρίζω»
Tuesday, 7 December 2021
Πώς να κλείσετε μια θέση ώστε να την ξανανοίξετε αργότερα
Thursday, 3 June 2021
Όλοι οι φυσικοί αριθμοί είναι στρόγγυλοι: Ένας εναλλακτικός ορισμός των πρώτων αριθμών
Αν η μεζούρα μου έχει ακρίβεια εκατοστού (cm), έχει νόημα να πω ότι το ύψος μου είναι
Στο άρθρο «Η τάξη μεγέθους και το μέγεθος της τάξης» παρουσιάσαμε μια ειδική μορφή στρογγυλοποίησης, η οποία μας επιτρέπει να εκτιμούμε την τάξη μεγέθους ενός συνόλου ή αντικειμένου. Είδαμε επίσης ότι η τάξη μεγέθους είναι άρρηκτα συνδεδεμένη με το αριθμητικό σύστημα που χρησιμοποιούμε. Στο άρθρο αυτό, θα δούμε άλλη μια χρήσιμη εφαρμογή της (συνήθους αυτή τη φορά) στρογγυλοποίησης, με τη βοήθεια της οποίας θα καταλήξουμε σε έναν εναλλακτικό ορισμό των πρώτων φυσικών αριθμών.
Στις φυσικές επιστήμες, για την έκφραση κάποιου μεγέθους, σημαντικότατο ρόλο παίζει η ακρίβεια του οργάνου μέτρησης, η οποία αναφέρεται πολλές φορές και ως διακριτική ικανότητα. Οποιαδήποτε απόδοση μιας μέτρησης με μονάδες μικρότερες της διακριτικής ικανότητας του οργάνου είναι ανούσια, καθώς ενέχει την πιθανότητα σφάλματος. Σε τέτοιες περιπτώσεις συνήθως καταφεύγουμε στη συνήθη διαδικασία της στρογγυλοποίησης η οποία περιγράφεται παρακάτω:
Αλγόριθμος στρογγυλοποίησης
- Βήμα 1ο: Προσδιορίζουμε την τάξη στην οποία θα γίνει η στρογγυλοποίηση. (Στη δική μας περίπτωση, η τάξη αυτή καθορίζεται από τη διακριτική ικανότητα της μεζούρας)
- Βήμα 2ο: Εξετάζουμε το ψηφίο της αμέσως μικρότερης τάξης
- Περίπτωση 1η: Αν είναι μικρότερο του
, τότε προχωράμε στο Βήμα 3ο - Περίπτωση 2η: Αν είναι μεγαλύτερο ή ίσο του
, τότε το ψηφίο της τάξης στρογγυλοποίησης αυξάνεται κατά 1 - Βήμα 3ο: Τα ψηφία όλων των τάξεων που είναι μικρότερες της τάξης στρογγυλοποίησης μηδενίζονται
Στην δική μας περίπτωση, η μεζούρα είναι βαθμονομημένη σε cm και άρα δεν μπορεί να «διακρίνει» μήκη μικρότερα του ενός cm. Γι αυτόν τον λόγο οφείλουμε να κάνουμε στρογγυλοποίηση στην τάξη των cm. Καθώς το ψηφίο
Βασισμένοι τώρα στην έννοια της στρογγυλοποίησης, θα δώσουμε έναν εναλλακτικό ορισμό των πρώτων ακεραίων αριθμών. Για το σκοπό αυτό, δίνουμε τον επόμενο τετριμμένο ορισμό:
Ορισμός 1: Ένας ακέραιος αριθμός καλείται στρόγγυλος όταν το τελευταίο του ψηφίο είναι το μηδέν.
Στο φως αυτού του ορισμού, ας προσπαθήσουμε να απαντήσουμε στην επόμενη ερώτηση:
Ποιοι από τους επόμενους φυσικούς αριθμούς είναι στρόγγυλοι;
Δεν νομίζω να υπάρχει αμφιβολία ότι η αυθόρμητη απάντηση είναι ότι στρόγγυλοι αριθμοί είναι οι
Από τα παραπάνω, μπορούμε να καταλήξουμε σε μερικές πολύτιμες παρατηρήσεις:
Παρατήρηση 1: Κάθε φυσικός αριθμός, στο αριθμητικό σύστημα με βάση τον εαυτό του, γράφεται ως
Παρατήρηση 2: Μια ακόμη παρατήρηση που πηγαίνει κόντρα στη διαίσθηση είναι ότι το
Παρατήρηση 3: Στην πραγματικότητα, για κάθε φυσικό αριθμό υπάρχουν τόσα αριθμητικά συστήματα στα οποία αυτός είναι στρόγγυλος, όσοι και οι φυσικοί του διαιρέτες, εξαιρουμένου του 1. Πιο συγκεκριμένα, αν
Στα συστήματα με βάση μεγαλύτερη του
Συνδυάζοντας τις τρεις προηγούμενες παρατηρήσεις μπορούμε να καταλήξουμε στο επόμενο θεώρημα, το οποίο μπορεί να θεωρηθεί και ως ένας εναλλακτικός ορισμός των πρώτων αριθμών.
Θεώρημα (Εναλλακτικός ορισμός των πρώτων αριθμών): Πρώτος είναι ένας φυσικός αριθμός
Απόδειξη:
Με βάση την Παρατήρηση 1 και 2, ο
(
(
Κλείνοντας, παρέχουμε μερικές επιπλέον χρήσιμες παρατηρήσεις καθώς και μερικά παραδείγματα στα οποία γίνεται χρήση του θεωρήματος αυτού:
Παρατήρηση 4: Προφανώς, κάθε άρτιος αριθμός μεγαλύτερος του
Παρατήρηση 5: Η έκφραση κάθε αριθμού
Παράδειγμα 1: Έστω ο αριθμός
Είναι φανερό ότι για καμία βάση μικρότερη του
Παράδειγμα 2: Έστω τέλος ο αριθμός
Παρατηρούμε ότι το
1 Το 1 εξαιρείται καθώς δεν νοείται αριθμητικό σύστημα με βάση το 1.
Saturday, 20 March 2021
Η τάξη μεγέθους και το μέγεθος της τάξης
Υπάρχει ένα σύντομο μαθηματικό ανέκδοτο που λέει το εξής1:
Ένας φαντάρος φυλάει σκοπιά στον λόχο του. Κάποια στιγμή διακρίνει στον ορίζοντα μια ένοπλη εχθρική ομάδα να πλησιάζει και τρέχει αμέσως να το αναφέρει στον Λοχαγό του:
«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»
«Πόσοι είναι;»
«Περίπου 1003!»
Είθισται στην καθημερινή μας πρακτική, όταν θέλουμε να εκτιμήσουμε την τάξη μεγέθους ενός συνόλου, να χρησιμοποιούμε τις δυνάμεις του
Τυπικά, η τάξη μεγέθους ενός αριθμού
Η τάξη μεγέθους του
Παρατηρούμε ότι η τάξη μεγέθους ενός αριθμού συνιστά μια ειδική μορφή στρογγυλοποίησης. Σε αντίθεση με τη συνήθη στρογγυλοποίηση, για τη μετάβαση από μία τάξη μεγέθους (
Ας επιστρέψουμε όμως στο ανέκδοτο. Αν και απεχθάνομαι την εξήγηση του λόγου για τον οποίο ένα ανέκδοτο είναι αστείο, χάριν του άρθρου θα πρέπει να κάνω μια εξαίρεση. Αυτό λοιπόν που κάνει αστείο το παραπάνω ανέκδοτο (ήδη αισθάνομαι τσακισμένος από αυτό που επιχειρώ να κάνω) είναι ότι ο φαντάρος προσπαθεί να δώσει την τάξη μεγέθους του πλήθους των εχθρών «στρογγυλοποιώντας» τον εκτιμώμενο αριθμό στη «μη-στρόγγυλη» τιμή
Ας μεταφέρουμε το σκηνικό με τον φαντάρο και τον Λοχαγό σε έναν υποτιθέμενο πλανήτη, στον οποίο κατοικεί ένας πολιτισμός που υιοθετεί το 17-δικό σύστημα αρίθμησης. Στο 17-δικό σύστημα ο αριθμός
Σε αυτή την περίπτωση, ο διάλογος μετατρέπεται στον εξής:
«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»
«Πόσοι είναι;»
«Περίπου 380!»
Αναμφίβολα, στον πλανήτη αυτό, το ανέκδοτο χάνει λίγη από την αίγλη του.
Παρόμοια είναι η κατάσταση αν ο πολιτισμός υιοθετεί το 59-δικό σύστημα. Τότε, καθώς
ο διάλογος μετατρέπεται στον εξής:
Άλλη μια φορά τη σκηνή. Φώτα! Κάμερα! Πάμε:
«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»
«Πόσοι είναι;»
«Περίπου 170!»3
Τέλος αν ο πολιτισμός αυτός υιοθετεί το 1003-δικό σύστημα, τότε ο διάλογος γίνεται ο εξής:
Πάμε μια τελευταία φορά το γύρισμα:
«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»
«Πόσοι είναι;»
«Περίπου 10!»
Φυσικά,
και το ανέκδοτο παύει πλέον να είναι ανέκδοτο.
Από τα παραπάνω διαπιστώνουμε μια άμεση εξάρτηση της αίσθησης του χιούμορ από το αριθμητικό σύστημα που χρησιμοποιούμε! Η πιο σημαντική διαπίστωση όμως είναι ότι η ίδια η έννοια της τάξης μεγέθους εξαρτάται τελικά άρρηκτα από το αριθμητικό σύστημα. Όπως έχουμε ήδη αναφέρει, οι αριθμοί
Είμαστε πλέον σε θέση να δώσουμε τον γενικό ορισμό της τάξης μεγέθους για οποιαδήποτε βάση
Αν εκφράσουμε έναν αριθμό
τότε η τάξη μεγέθους του
Για παράδειγμα, στην περίπτωση του δυαδικού συστήματος, ήτοι για
Στον επόμενο πίνακα παραθέτω ενδεικτικά παραδείγματα της «δεκαδικής» τάξης μεγέθους διαφόρων αντικειμένων και αποστάσεων στο Σύμπαν, διατρέχοντας όλο το φάσμα των μεγεθών, από τον μικρόκοσμο στον μακρόκοσμο.
![]() |
Η τάξη μεγέθους διαφόρων αντικειμένων και αποστάσεων στο Σύμπαν. |
Κλείνοντας, θα ήθελα να διηγηθώ μια μικρή ιστοριούλα από τα σχολικά μου χρόνια. Σε μία ονειροπόληση του μυαλού μου, κατά τη διάρκεια ενός μαθήματος το οποίο προφανώς δεν κατάφερε να κερδίσει την προσοχή μου, αναρωτήθηκα πόσο να ζυγίζει άραγε ο αέρας που βρίσκεται μέσα σε μία άδεια τάξη. Φυσικά, δεν με ενδιέφερε να μάθω το ακριβές βάρος του αέρα, αλλά να εκτιμήσω την τάξη μεγέθους του. Είναι της τάξης των γραμμαρίων, του ενός κιλού, των δέκα κιλών, των εκατό κιλών ή μήπως του ενός τόνου; Επειδή ασφαλώς δεν θυμάμαι τις πράξεις που είχα κάνει τότε, θα δοκιμάσω να επαναλάβω εκ νέου την εκτίμησή μου:
Έστω ότι οι διαστάσεις μιας συνηθισμένης τάξης είναι
Sunday, 3 January 2021
Οι προπαίδειες
Από μικρή ηλικία μαθαίνουμε την προπαίδεια, τη «μία και μοναδική» προπαίδεια. Για την προπαίδεια έχουν γραφτεί χαριτωμένα παιδικά ποιηματάκια και τραγουδάκια, έχουν δημιουργηθεί όμορφες και εύπεπτες εικόνες, έχουν επινοηθεί έξυπνα τεχνάσματα που χρησιμοποιούν διάφορα μέσα, όπως για παράδειγμα τα δάχτυλα των χεριών, τεμνόμενες γραμμές, κτλ. Όλα αυτά με σκοπό να μάθουν τα παιδιά εύκολα και γρήγορα αυτό το πολύτιμο εργαλείο που θα τους επιτρέψει αργότερα να προχωρήσουν στα μαθηματικά. Ένα πράγμα όμως που άθελά μας παραβλέπουμε είναι ότι η προπαίδεια δεν είναι τελικά «μία και μοναδική». Απεναντίας, υπάρχουν τόσες προπαίδειες, όσοι είναι και οι φυσικοί αριθμοί, δηλαδή άπειρες! Το ότι μαθαίνουμε μόνο μία, οφείλεται αποκλειστικά στο γεγονός ότι εντελώς αυθαίρετα, το ανθρώπινο είδος, ανάμεσα από τα άπειρα αριθμητικά συστήματα, καθένα από τα οποία έχει ως βάση έναν φυσικό αριθμό, έχει επιλέξει να πορευτεί με το δεκαδικό σύστημα, το σύστημα δηλαδή που έχει ως βάση το δέκα.
Για τη διαδικασία εξαγωγής της προπαίδειας με οποιαδήποτε αριθμητική βάση είναι απαραίτητο το επόμενο Θεώρημα και ο επόμενος Ορισμός της Θεωρίας Αριθμών:
Θεώρημα: Αν b είναι ένας φυσικός αριθμός μεγαλύτερος του 1, τότε κάθε φυσικός αριθμός n>0 έχει μια μονοσήμαντη παράσταση της μορφής
όπου
Ορισμός: Η έκφραση του αριθμού n στο b-δικό αριθμητικό σύστημα είναι:
Για παράδειγμα ο αριθμος 24 στο 7-δικό σύστημα μεταφράζεται ως εξής:
όπως φαίνεται εύκολα αν στις σχέσεις του Θεωρήματος και του Ορισμού θέσουμε
Έστω τώρα ότι θέλουμε να υπολογίσουμε το γινόμενο
Ένας πιο στοιχειώδης τρόπος, που είναι ανεξάρτητος από το 10-δικό σύστημα είναι ο εξής:
Σε κάθε περίπτωση, βρίσκουμε ότι στο 7-δικό σύστημα
Ακολουθώντας την παραπάνω λογική μπορούμε να συμπληρώσουμε την προπαίδεια για όποια βάση επιθυμούμε. Παρακάτω παρουσιάζονται οι προπαίδειες που αντιστοιχούν στα αριθμητικά συστήματα με βάση από το 1 ως το 10.
![]() |
2-δικό σύστημα. |
![]() |
3-δικό σύστημα. |
![]() |
4-δικό σύστημα. |
![]() |
5-δικό σύστημα. |
![]() |
6-δικό σύστημα. |
![]() |
7-δικό σύστημα. |
![]() |
8-δικό σύστημα. |
![]() |
9-δικό σύστημα. |
![]() |
10-δικό σύστημα. |
- Αρχικά, μπορεί εύκολα κανείς να καταλήξει στο εσφαλμένο συμπέρασμα ότι υπάρχει τυπογραφικό λάθος, καθώς σε όλους τους πίνακες γράφει επάνω αριστερά 10-δικό. Στην πραγματικότητα όμως δεν υπάρχει κανένα τυπογραφικό λάθος. Το μυστικό είναι ότι σε κάθε σύστημα η βάση εκφράζεται με το 10. Το κάθε σύστημα στην ουσία διαφέρει μόνο στο πλήθος των ψηφίων που χρησιμοποιεί.
- Σε όλους τους πίνακες, η δεύτερη γραμμή και η δεύτερη στήλη περιέχει μόνο μηδενικά. Αυτό είναι ασφαλώς συνεπές με το ότι οποιοσδήποτε πολλαπλασιαμός με το 0 μας δίνει 0, ανεξάρτητα από την αριθμητική βάση.
- Σε όλους τους πίνακες, η τρίτη γραμμή και η τρίτη στήλη ταυτίζονται με την πρώτη γραμμή και την πρώτη στήλη, αντίστοιχα. Αυτό, όπως είναι αναμενόμενο, οφείλεται στο ότι το 1 είναι το ουδέτερο στοιχείο του πολλαπλασιασμού, που με απλούστερα λόγια σημαίνει ότι όποιος αριθμός κι αν πολλαπλασιαστεί με το 1, παραμένει αναλλοίωτος.
- Σε όλους τους πίνακες, η τελευταία γραμμή και η τελευταία στήλη έχουν την ίδια μορφή: 0, 10, 20, ..., 100. Η ιδιότητα αυτή είναι επίσης αναμενόμενη αρκεί να αναλογιστεί κανείς ότι όποιος αριθμός n κι αν πολλαπλασιαστεί με την εκάστοτε βάση b=10, το αποτέλεσμα θα είναι
, όπως προκύπτει από το συνδυασμό του Θεωρήματος, του Ορισμού και της Παρατήρησης 1. - Όλοι οι πίνακες είναι συμμετρικοί ως προς τη κύρια διαγώνιο που ξεκινάει από την επάνω αριστερή γωνία και καταλήγει στην κάτω δεξιά γωνία. Αυτό είναι συνέπεια της αντιμεταθετικής ιδιότητας του πολλαπλασιασμού:
.