Saturday 20 March 2021

Η τάξη μεγέθους και το μέγεθος της τάξης

Υπάρχει ένα σύντομο μαθηματικό ανέκδοτο που λέει το εξής1:

Ένας φαντάρος φυλάει σκοπιά στον λόχο του. Κάποια στιγμή διακρίνει στον ορίζοντα μια ένοπλη εχθρική ομάδα να πλησιάζει και τρέχει αμέσως να το αναφέρει στον Λοχαγό του:

«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»

«Πόσοι είναι;»

«Περίπου 1003!»

Είθισται στην καθημερινή μας πρακτική, όταν θέλουμε να εκτιμήσουμε την τάξη μεγέθους ενός συνόλου, να χρησιμοποιούμε τις δυνάμεις του \( 10 \). Έτσι, για παράδειγμα, μπορούμε χοντρικά να πούμε ότι το πλάτος της ανθρώπινης παλάμης είναι «περίπου» \( 10 \) εκατοστά. Ένα μεγάλο προτέρημα της τάξης μεγέθους είναι ότι μας επιτρέπει να κάνουμε γρήγορες συγκρίσεις ανάμεσα σε δύο ή περισσότερα σύνολα ή αντικείμενα. Αύξηση κατά μία τάξη μεγέθους σημαίνει πολλαπλασιασμό επί \( 10 \), ενώ μείωση κατά μία τάξη μεγέθους σημαίνει διαίρεση δια \( 10 \). Γενικά, αύξηση (μείωση) κατά \( n \) τάξεις μεγέθους σημαίνει πολλαπλασιασμό επί (διαίρεση δια) \( 10^n. \) Για παράδειγμα, η μέση ταχύτητα μετακίνησης από μία πόλη στην άλλη με αυτοκίνητο είναι \( 100 \, km/h \), ενώ αντίστοιχα η μέση ταχύτητα με κάρο είναι \( 10 \, km/h \). Αυτό σημαίνει ότι η εμφάνιση του αυτοκινήτου στον σύγχρονο κόσμο αύξησε τη μέση ταχύτητα μετακίνησης κατά μία τάξη μεγέθους, δηλαδή δεκαπλασίασε περίπου την ταχύτητα σε σχέση με εκείνη του παλαιού κόσμου.

Τυπικά, η τάξη μεγέθους ενός αριθμού \( a \) υπολογίζεται ως εξής: Εκφράζουμε τον αριθμό \( a \) στη μορφή: 

\( a = m \cdot 10^r \), όπου \( \frac{\sqrt{10}}{10} \le m < \sqrt{10} \). 

Η τάξη μεγέθους του \( a \) είναι τότε ίση με \( 10^r \).

Παρατηρούμε ότι η τάξη μεγέθους ενός αριθμού συνιστά μια ειδική μορφή στρογγυλοποίησης. Σε αντίθεση με τη συνήθη στρογγυλοποίηση, για τη μετάβαση από μία τάξη μεγέθους (\( 10^r \)) στην επόμενη (\( 10^{r+1} \)) χρησιμοποιείται ως κατώφλι η τιμή \( \sqrt{10} \cdot 10^r \approx 3.162 \cdot 10^r, \) που είναι ο γεωμετρικός μέσος2 των τιμών \( 10^r \) και \( 10^{r+1} \). Έτσι, η τάξη μεγέθους του \( 316 \) είναι \( 10^2=100 \), ενώ του \( 317 \) είναι \( 10^3=1000 \), καθώς \( 316 = 3.16 \cdot 10^2 \), ενώ \( 317 = 0.317 \cdot 10^3 \). Προσέξτε ότι δεν θα μπορούσαμε να γράψουμε \( 316 = 0.316 \cdot 10^3 \), διότι \( 0.316 < \frac{\sqrt{10}}{10} \). Επίσης, δεν θα μπορούσαμε να γράψουμε \( 317 = 3.17 \cdot 10^2 \), διότι \( \sqrt{10} < 3.17 \).

Ας επιστρέψουμε όμως στο ανέκδοτο. Αν και απεχθάνομαι την εξήγηση του λόγου για τον οποίο ένα ανέκδοτο είναι αστείο, χάριν του άρθρου θα πρέπει να κάνω μια εξαίρεση. Αυτό λοιπόν που κάνει αστείο το παραπάνω ανέκδοτο (ήδη αισθάνομαι τσακισμένος από αυτό που επιχειρώ να κάνω) είναι ότι ο φαντάρος προσπαθεί να δώσει την τάξη μεγέθους του πλήθους των εχθρών «στρογγυλοποιώντας» τον εκτιμώμενο αριθμό στη «μη-στρόγγυλη» τιμή \( 1003 \). Όμως, υπάρχει κάτι σημαντικό εδώ. Το ανέκδοτο είναι αστείο μόνο εφόσον σκεφτόμαστε στο δεκαδικό σύστημα και εξηγώ αμέσως τι εννοώ.

Ας μεταφέρουμε το σκηνικό με τον φαντάρο και τον Λοχαγό σε έναν υποτιθέμενο πλανήτη, στον οποίο κατοικεί ένας πολιτισμός που υιοθετεί το 17-δικό σύστημα αρίθμησης. Στο 17-δικό σύστημα ο αριθμός \( 1003 \) εκφράζεται ως \( 380 \), αφού εύκολα προκύπτει ότι 

\( (1003)_{17} = 3 \times 17^2 + 8 \times 17^1 + 0 \times 17^0 \) 

Σε αυτή την περίπτωση, ο διάλογος μετατρέπεται στον εξής:

«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»

«Πόσοι είναι;»

«Περίπου 380!»

Αναμφίβολα, στον πλανήτη αυτό, το ανέκδοτο χάνει λίγη από την αίγλη του.

Παρόμοια είναι η κατάσταση αν ο πολιτισμός υιοθετεί το 59-δικό σύστημα. Τότε, καθώς 

\( (1003)_{59} = 17 \times 59^1 + 0 \times 59^0 \) 

ο διάλογος μετατρέπεται στον εξής: 

Άλλη μια φορά τη σκηνή. Φώτα! Κάμερα! Πάμε:

«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»

«Πόσοι είναι;»

«Περίπου 170!»3

Τέλος αν ο πολιτισμός αυτός υιοθετεί το 1003-δικό σύστημα, τότε ο διάλογος γίνεται ο εξής: 

Πάμε μια τελευταία φορά το γύρισμα:

«Κύριε Λοχαγέ, δεχόμαστε επίθεση από εχθρούς!»

«Πόσοι είναι;»

«Περίπου 10!»

Φυσικά,

\( (1003)_{1003} = 1 \times 1003^1 + 0 \times 1003^0 \)

και το ανέκδοτο παύει πλέον να είναι ανέκδοτο. 

Από τα παραπάνω διαπιστώνουμε μια άμεση εξάρτηση της αίσθησης του χιούμορ από το αριθμητικό σύστημα που χρησιμοποιούμε! Η πιο σημαντική διαπίστωση όμως είναι ότι η ίδια η έννοια της τάξης μεγέθους εξαρτάται τελικά άρρηκτα από το αριθμητικό σύστημα. Όπως έχουμε ήδη αναφέρει, οι αριθμοί \( 10 \) και \( 100 \) διαφέρουν μία τάξη μεγέθους στο 10-δικό σύστημα. Οι ίδιοι αριθμοί όμως στο δυαδικό σύστημα μεταφράζονται σε \( (1010)_2 \) και \( (1100100)_2 \), που προσεγγιστικά είναι οι \( (1000)_2 \) και \( (10000000)_2 \), οι οποίοι διαφέρουν τέσσερις τάξεις μεγέθους! Στην καθημερινότητά μας συνεπώς κάθε φορά που μιλάμε για την τάξη μεγέθους ενός αντικειμένου, ουσιαστικά κάνουμε τη σιωπηρή υπόθεση ότι αναφερόμαστε στο προσφιλές σε όλους μας 10-δικό σύστημα. 

Είμαστε πλέον σε θέση να δώσουμε τον γενικό ορισμό της τάξης μεγέθους για οποιαδήποτε βάση \( b \). 

Αν εκφράσουμε έναν αριθμό \( a \) στη μορφή:

\( a = m \cdot b^r \), όπου \( \frac{\sqrt{b}}{b} \le m < \sqrt{b} \)

τότε η τάξη μεγέθους του \( a \) ως προς τη βάση \( b \) είναι ίση με \( b^r \).

Για παράδειγμα, στην περίπτωση του δυαδικού συστήματος, ήτοι για \( b=2 \), έχουμε \( \sqrt{2} \approx (1.01101)_2 \), συνεπώς ο αριθμός \( (10110)_2 \) που αντιστοιχεί με το \( 22 \) στο 10-δικό, έχει τάξη μεγέθους \( 4 \), αφού \( (10110)_2 = (1.0110)_2 \cdot 2^4 \), ενώ ο αριθμός \( (10111)_2 \) που αντιστοιχεί με το \( 23 \) στο 10-δικό, έχει τάξη μεγέθους \( 5 \), αφού \( (10111)_2 = (0.10111)_2 \cdot 2^5 \). 

Στον επόμενο πίνακα παραθέτω ενδεικτικά παραδείγματα της «δεκαδικής» τάξης μεγέθους διαφόρων αντικειμένων και αποστάσεων στο Σύμπαν, διατρέχοντας όλο το φάσμα των μεγεθών, από τον μικρόκοσμο στον μακρόκοσμο.

Η τάξη μεγέθους διαφόρων αντικειμένων και αποστάσεων στο Σύμπαν.

Κλείνοντας, θα ήθελα να διηγηθώ μια μικρή ιστοριούλα από τα σχολικά μου χρόνια. Σε μία ονειροπόληση του μυαλού μου, κατά τη διάρκεια ενός μαθήματος το οποίο προφανώς δεν κατάφερε να κερδίσει την προσοχή μου, αναρωτήθηκα πόσο να ζυγίζει άραγε ο αέρας που βρίσκεται μέσα σε μία άδεια τάξη. Φυσικά, δεν με ενδιέφερε να μάθω το ακριβές βάρος του αέρα, αλλά να εκτιμήσω την τάξη μεγέθους του. Είναι της τάξης των γραμμαρίων, του ενός κιλού, των δέκα κιλών, των εκατό κιλών ή μήπως του ενός τόνου; Επειδή ασφαλώς δεν θυμάμαι τις πράξεις που είχα κάνει τότε, θα δοκιμάσω να επαναλάβω εκ νέου την εκτίμησή μου:

Έστω ότι οι διαστάσεις μιας συνηθισμένης τάξης είναι \( 8 \, m \times 8 \, m \times 3 \, m \). Ο όγκος αυτής της τάξης είναι τότε \( 192 \, m^3 \). Χάριν ευκολίας και δεδομένου ότι κάνουμε χονδρικές υποθέσεις ας στρογγυλοποιήσουμε αυτόν τον όγκο στα \( 200 \, m^3 \) ή ισοδύναμα \( 200000 \, lt \). Η γραμμομοριακή μάζα του ατμοσφαιρικού αέρα σε ιδανικές συνθήκες (STP4) εκτιμάται στα \( 28,96 \, g/mole \), δηλαδή περίπου \( 30 \, g/mole \), ενώ ο γραμμομοριακός του όγκος είναι \( 22,4 \, lt/mole \), δηλαδή περίπου \( 20 \, lt/mole \). Με απλά λόγια, ένα mole ατμοσφαιρικού αέρα ζυγίζει \( 30 \, g \) και καταλαμβάνει \( 20 \, lt \). Από αυτά τα δεδομένα προκύπτει ότι η τάξη περιέχει \( 200000 \, lt : 20 \, lt/mole = 10000 \, mole \) αέρα, ο οποίος ζυγίζει \( 10000 \, mole \cdot 30 \, g/mole = 300000 \, g = 300 \, Kg = 3 \cdot 10^2 \, Kg \). Διόλου αμελητέο! Βέβαια, αξίζει να σημειώσουμε ότι αν είχε έρθει αντιμέτωπος με την ερώτηση «πόσο ζυγίζει ο αέρας σε μία άδεια τάξη» ο Δημόκριτος, η απάντηση που θα έδινε θα ήταν μάλλον «μηδέν», αφού σε μία άδεια τάξη δεν υπάρχει αέρας!



1 Το ανέκδοτο αυτό το άκουσα για πρώτη φορά από τον καλό μου φίλο Δημήτρη Γκαρίπη.

2 Ο Γεωμετρικός Μέσος δύο αριθμών \( a \) και \( b \) είναι ο \( \sqrt{a \cdot b} \).

3 Για την ακρίβεια, η ορθή έκφραση είναι \( \theta 0 \), αφού το \( 17 \) στο 59-δικό σύστημα συμβατικά συμβολίζεται με \( \theta \). Ωστόσο, στο κείμενο, χάριν ευφωνίας χρησιμοποιείται το κατά τα άλλα λανθασμένο \( 170 \).

4 Standard Temperature and Pressure (STP) είναι οι πρότυπες συνθήκες για τη θερμοκρασία T και την πίεση P και ορίζονται ως εξής: Τ: \( 0^{\circ} \)C, P: \( 0,98692 \, atm \).

2 comments:

  1. Πώ πω, τόσος αέρας δωρεάν?

    ReplyDelete
    Replies
    1. Και μια καλή δικαιολογία από τους μαθητές προς τους καθηγητές όταν οι τελευταίοι τους λένε ότι έχουν πάρει πολύ αέρα.

      Delete